Observables for expectation values
Observables play a crucial role in computing the expectation value in conjunction with a
wave function. Currently, observables constructed purely from the Pauli group
\(\{\hat{X},\hat{Y},\hat{Z},\hat{I}\}\) are supported. In the context of sQUlearn,
observables are mandatory inputs for Quantum Neural Networks (QNNs) and can be
employed in the Projected Quantum Kernel program.
All operators follow the Base Class ObservableBase
. sQulearn features several
predefined observables, but it is also possible to simply construct custom observables.
Implemented observables.
The following predefined observables are available in the module squlearn.observables
:
Observable constructed from a single Pauli operator of a single Qubit. |
|
Observable for summation of single Pauli operators. |
|
Observable for measuring the probability of being in state 0 or 1 of a specified qubit. |
|
Observable for summing single Qubit probabilities of binary states. |
|
Implementation of Ising type Hamiltonians. |
|
Class for defining a custom observable. |
The observables are simply constructed by initializing the associated class.
Example: Summed Pauli observable
from squlearn.observables import SummedPaulis
op = SummedPaulis(num_qubits=2)
print(op)
SparsePauliOp(['II', 'IZ', 'ZI'],
coeffs=[ParameterExpression(1.0*p[0]), ParameterExpression(1.0*p[1]),
ParameterExpression(1.0*p[2])])
Custom observables
sQUlearn features several options to construct custom observables.
With the class CustomObservable
, it is possible to construct observables from a string
containing the letters of the Pauli matrices ("X"
, "Y"
, "Z"
, "I"
).
The resulting observable can be multiplied by a parameter by setting parameterized=True
.
Furthermore, observables can be added by +
or multiplied by *
with each other.
This allows the creation of arbitrary observables.
Example: Custom observable
from squlearn.observables import CustomObservable
ob1 = CustomObservable(num_qubits=2, operator_string="IX",parameterized=True)
ob2 = CustomObservable(num_qubits=2, operator_string="ZY",parameterized=True)
added_ob = ob1 + ob2
print("Added observable:\n",added_ob,"\n\n")
squared_ob = added_ob*added_ob
print("Squared observable:\n",squared_ob)
Added observable:
SparsePauliOp(['IX', 'ZY'],
coeffs=[ParameterExpression(1.0*p[0]), ParameterExpression(1.0*p[1])])
Squared observable:
SparsePauliOp(['II', 'ZZ'],
coeffs=[ParameterExpression(1.0*p[0]**2 + 1.0*p[1]**2), ParameterExpression(0)])
Example: More complex custom observable
It is also possible to construct more complex observables by supplying a list of strings containing the Pauli matrices. The observable is then constructed by adding the single observables together.
from squlearn.observables import CustomObservable
# It is also possible to add trainable parameters:
ob = CustomObservable(num_qubits=4, operator_string=["ZIZZ", "XIXI"], parameterized=True)
print("Custom observable with multiple operators:\n",ob)
Custom observable with multiple operators:
SparsePauliOp(['ZIZZ', 'XIXI'],
coeffs=[ParameterExpression(1.0*p[0]), ParameterExpression(1.0*p[1])])
Note that in Qiskit, the qubits are counted from the right to the left as in the computational basis!
Mapping observables to real qubits
When running on a backend, the number of physical qubits may change
from the number of qubits the definition of the observable.
If it is necessary, it is possible to adjust the observable to the physical qubits.
This is achieved by providing a map from the qubits of the observable to the
physical qubits utilized for example in the feature map via the function set_qubit_map()
.
The map can be for example obtained in the transpiled encoding circuit.
Example: Use the mapping from the transpiled encoding circuit
from squlearn.encoding_circuit import ChebyshevRx,TranspiledEncodingCircuit
from squlearn.observables import SummedPaulis
from qiskit_ibm_runtime.fake_provider import FakeManilaV2
fm = TranspiledEncodingCircuit(ChebyshevRx(3,1),backend=FakeManilaV2(),initial_layout=[0,1,4])
ob = SummedPaulis(num_qubits=3, op_str="Z")
print("Observable before mapping:\n",ob,"\n\n")
ob.set_map(fm.qubit_map, fm.num_physical_qubits)
print("Observable after mapping:\n",ob)
Observable before mapping:
SparsePauliOp(['III', 'IIZ', 'IZI', 'ZII'],
coeffs=[ParameterExpression(1.0*p[0]), ParameterExpression(1.0*p[1]),
ParameterExpression(1.0*p[2]), ParameterExpression(1.0*p[3])])
Observable after mapping:
SparsePauliOp(['IIIII', 'IIIIZ', 'IIIZI', 'ZIIII'],
coeffs=[ParameterExpression(1.0*p[0]), ParameterExpression(1.0*p[1]),
ParameterExpression(1.0*p[2]), ParameterExpression(1.0*p[3])])
Derivatives of the observable
In sQUlearn it is also possible to calculate derivatives of observables
as for example needed during the training of the QNN.
This is possible with the class ObservableDerivatives
.
The derivatives are calculated with respect to the parameters of the observable.
Example: first-order derivatives of the Ising Hamiltonian
from squlearn.observables import IsingHamiltonian
from squlearn.observables.observable_derivatives import ObservableDerivatives
ob = IsingHamiltonian(num_qubits=3)
print("Observable:\n", ob,"\n\n")
print("Gradient of the observable:\n", ObservableDerivatives(ob).get_derivative("dop"))
Observable:
SparsePauliOp(['III', 'IIZ', 'IZI', 'ZII', 'IZZ', 'ZIZ', 'ZZI'],
coeffs=[ParameterExpression(1.0*p[0]), ParameterExpression(1.0*p[1]),
ParameterExpression(1.0*p[2]), ParameterExpression(1.0*p[3]),
ParameterExpression(1.0*p[4]), ParameterExpression(1.0*p[5]),
ParameterExpression(1.0*p[6])])
Gradient of the observable:
[1.0*SparsePauliOp(['III'],
coeffs=[1.+0.j]), 1.0*SparsePauliOp(['IIZ'],
coeffs=[1.+0.j]), 1.0*SparsePauliOp(['IZI'],
coeffs=[1.+0.j]), 1.0*SparsePauliOp(['ZII'],
coeffs=[1.+0.j]), 1.0*SparsePauliOp(['IZZ'],
coeffs=[1.+0.j]), 1.0*SparsePauliOp(['ZIZ'],
coeffs=[1.+0.j]), 1.0*SparsePauliOp(['ZZI'],
coeffs=[1.+0.j])]
Example: higher-order derivative of the cubed SummedPaulis observable
Furthermore, arbitrary derivatives can be computed by supplying a tuple, although the
higher-order derivatives are zero for linear parameters.
To achieve this, the function ObservableDerivatives.get_derivative()
can be used with a tuple
of parameters ObservableDerivatives.parameter_vector()
.
from squlearn.observables import SummedPaulis
from squlearn.observables.observable_derivatives import ObservableDerivatives
# Build cubed SummedPaulis observable
op = SummedPaulis(num_qubits=2)
op3 = op*op*op
print("Cubed operator:\n",op3)
# Get the Hessian from a tuple
deriv = ObservableDerivatives(op3)
print("Second-order derivative w.r.t. p[0]:\n",
deriv.get_derivative((deriv.parameter_vector[0],deriv.parameter_vector[0])))
Cubed operator:
SparsePauliOp(['II', 'IZ', 'ZI', 'ZZ'],
coeffs=[ParameterExpression(2.0*p[0]*p[1]*p[4] + 2.0*p[0]*p[2]*p[5] + 1.0*p[3]*(1.0*p[0]**2 + 1.0*p[1]**2 + 1.0*p[2]**2)),
ParameterExpression(2.0*p[0]*p[1]*p[3] + 2.0*p[1]*p[2]*p[5] + 1.0*p[4]*(1.0*p[0]**2 + 1.0*p[1]**2 + 1.0*p[2]**2)),
ParameterExpression(2.0*p[0]*p[2]*p[3] + 2.0*p[1]*p[2]*p[4] + 1.0*p[5]*(1.0*p[0]**2 + 1.0*p[1]**2 + 1.0*p[2]**2)),
ParameterExpression(2.0*p[0]*p[1]*p[5] + 2.0*p[0]*p[2]*p[4] + 2.0*p[1]*p[2]*p[3])])
Second-order derivative w.r.t. p[0]:
[1.0*[1.0*SparsePauliOp(['II', 'IZ', 'ZI'],
coeffs=[ParameterExpression(2.0*p_op[3]), ParameterExpression(2.0*p_op[4]),
ParameterExpression(2.0*p_op[5])])]]
Example: Squared summed Pauli Observable
It is also possible to calculate the squared observable, which is needed for the calculation of the variance of the observable.
from squlearn.observables import SummedPaulis
from squlearn.observables.observable_derivatives import ObservableDerivatives
op = SummedPaulis(num_qubits=3)
print(ObservableDerivatives(op).get_operator_squared())
SparsePauliOp(['III', 'IIZ', 'IZI', 'ZII', 'IZZ', 'ZIZ', 'ZZI'],
coeffs=[ParameterExpression(1.0*p_op[0]**2 + 1.0*p_op[1]**2 + 1.0*p_op[2]**2 + 1.0*p_op[3]**2),
ParameterExpression(2.0*p_op[0]*p_op[1]),
ParameterExpression(2.0*p_op[0]*p_op[2]),
ParameterExpression(2.0*p_op[0]*p_op[3]),
ParameterExpression(2.0*p_op[1]*p_op[2]),
ParameterExpression(2.0*p_op[1]*p_op[3]),
ParameterExpression(2.0*p_op[2]*p_op[3])])