squlearn.observables.SingleProbability

class squlearn.observables.SingleProbability(num_qubits: int, qubit: int = 0, one_state: bool = False, parameterized: bool = False)

Observable for measuring the probability of being in state 0 or 1 of a specified qubit.

Equation as the operator is implemented:

\[\hat{H} = 0.5(\hat{I}_i+\hat{Z}_i) (= \ket{0}\bra{0}_i) \qquad \text{or} \qquad \hat{H} = 0.5(\hat{I}_i-\hat{Z}_i) (= \ket{1}\bra{1}_i)\]

Operator can be optionally parameterized.

Parameters:
  • num_qubits (int) – Number of qubits.

  • qubit (int) – Qubit to measure the probability of.

  • one_state (bool) – If True, measure the probability of being in state 1, otherwise state 0 (default: False).

  • parameterized (bool) – If True, the operator is parameterized (default: false).

Attributes:

num_qubits

Number of qubits.

Type:

int

num_parameters

Number of trainable parameters in the single Pauli operator.

Type:

int

qubit

Qubit to measure the probability of.

Type:

int

one_state

If True, measure the probability of being in state 1, otherwise state 0.

Type:

bool

parameterized

If True, the operator is parameterized.

Type:

bool

Methods:

generate_initial_parameters(ones: bool = True, seed: int | None = None) ndarray

Generates random parameters for the observable

Parameters:
  • ones (bool) – If True, returns an array of ones (default: True)

  • seed (Union[int,None]) – Seed for the random number generator

Returns:

The randomly generated parameters

get_operator(parameters: ParameterVector | ndarray) SparsePauliOp

Returns Operator as a SparsePauliOp expression.

Parameters:

parameters (Union[ParameterVector, np.ndarray]) – Vector of parameters used in the operator

Returns:

StateFn expression of the observable.

get_params(deep: bool = True) dict

Returns hyper-parameters and their values of the single probability operator.

Parameters:

deep (bool) – If True, also the parameters for contained objects are returned (default=True).

Returns:

Dictionary with hyper-parameters and values.

get_pauli(parameters: ParameterVector | ndarray = None) SparsePauliOp

Function for generating the SparsePauliOp expression of the single probability operator.

Parameters:

parameters (Union[ParameterVector, np.ndarray]) – Parameters of the single probability operator.

Returns:

SparsePauliOp expression of the specified single probability operator.

get_pauli_mapped(parameters: ParameterVector | ndarray) SparsePauliOp

Changes the operator to the physical qubits, set by set_map().

Parameters:

parameters (Union[ParameterVector, np.ndarray]) – Vector of parameters used in the operator

Returns:

Expectation operator in Qiskit’s SprasePauliOp class with qubits mapped to physical ones

set_map(qubit_map: list | dict, num_all_qubits: int)

Function for setting a qubit mapping from physical qubits to the ones of the operator.

This function is necessary whenever the number of physical qubits are different from the operator definition, as for example when running on a real backend. The number of qubits in the system has to be larger than the number of qubits in the observable.

Parameters:
  • qubit_map (Union[list, dict]) – A list or dictionary specifying which of the input qubits are mapped to the output qubits.

  • num_all_qubits (int) – The total number of qubits in the system.

set_params(**params) None

Sets value of the operator hyper-parameters.

Parameters:

params – Hyper-parameters and their values, e.g. num_qubits=2.