squlearn.qrc.QRCClassifier
- class squlearn.qrc.QRCClassifier(encoding_circuit: EncodingCircuitBase, executor: Executor, ml_model: str = 'linear', ml_model_options: dict | None = None, operators: ObservableBase | list[ObservableBase] | str = 'random_paulis', num_operators: int = 100, operator_seed: int = 0, param_ini: ndarray | None = None, param_op_ini: ndarray | None = None, parameter_seed: int | None = 0, caching: bool = True)
Quantum Reservoir Computing for classification.
This class implements a Quantum Reservoir Computing (QRC) framework designed for regression tasks. In QRC, data is encoded into a quantum system—referred to as the quantum reservoir—using an encoding circuit. The state of the quantum reservoir is then measured using a set of quantum operators, often randomly chosen. The measured values, also known as expectation values, are used as features for a classical machine learning model to perform the classification. As a default a simple classification based on a single perceptron is used.
- Parameters:
encoding_circuit (EncodingCircuitBase) – The encoding circuit to use for encoding the data into the reservoir.
executor (Executor) – Executor instance
ml_model (str) –
The classical machine learning model to use (default: linear), possible values are:
"mlp"for a multi-layer perceptron classification model."linear"for a single layer perceptron."kernel"for a Support Vector Classifier with a RBF kernel.
ml_model_options (dict) – The options for the machine learning model. Default options of the sklearn model are used if None.
operators (Union[ObservableBase, list[ObservableBase], str]) –
Strategy for generating the operators used to measure the quantum reservoir. Possible values are:
"random_paulis"generates random Pauli operators (default)."single_paulis"generates single qubit Pauli operators.
Alternatively, a list of ObservableBase objects can be provided.
num_operators (int) – The number of random Pauli operators to generate for
"operators = random_paulis"(default: 100).operator_seed (int) – The seed for the random operator generation for
"operators = random_paulis"(default: 0).param_ini (Union[np.ndarray, None]) – The parameters for the encoding circuit.
param_op_ini (Union[np.ndarray, None]) – The initial parameters for the operators.
parameter_seed (Union[int, None]) – The seed for the initial parameter generation if no parameters are given.
caching (bool) – Whether to cache the results of the evaluated expectation values.
See also
squlearn.qrc.QRCRegressorQuantum Reservoir Computing for Regression.
squlearn.qrc.base_qrc.BaseQRCBase class for Quantum Reservoir Computing.
Example: Classification of Moon example with Quantum Reservoir Computing
from squlearn import Executor from squlearn.encoding_circuit import HubregtsenEncodingCircuit from squlearn.qrc import QRCClassifier from sklearn.datasets import make_moons from sklearn.model_selection import train_test_split X, y = make_moons(n_samples=1000, noise=0.2, random_state=42) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42) clf = QRCClassifier(HubregtsenEncodingCircuit(num_qubits=4), Executor(), ml_model="linear", operators="random_paulis", num_operators=300, ) clf.fit(X_train, y_train) y_pred = clf.predict(X_test)
Methods:
- dump(target: str | IO[bytes]) None
Serializes the model object to a file or file-like object. :param target: The target file path or file-like object where the model will be serialized. :type target: Union[str, IO[bytes]]
- fit(X, y) None
Fit a new Quantum Reservoir Computing model to data.
- Parameters:
X – Input data
y – Labels
- get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequestencapsulating routing information.- Return type:
MetadataRequest
- get_params(deep: bool = True) dict
Returns a dictionary of parameters for the current object.
- Parameters:
deep – If True, includes the parameters from the base class.
- Returns:
A dictionary of parameters for the current object.
- Return type:
dict
- classmethod load(source: str | IO[bytes], executor: Executor) T
Deserializes the model object from a file or file-like object, injecting the provided Executor. :param source: The source file path or file-like object from which the model will be deserialized. :type source: Union[str, IO[bytes]] :param executor: The Executor instance to be injected into the deserialized model. :type executor: Executor
- Returns:
The deserialized model object with the injected Executor.
- predict(X) ndarray
Predict using the Quantum Reservoir Computing.
- Parameters:
X – The input data.
- Returns:
The predicted values.
- Return type:
np.ndarray
- score(X, y, sample_weight=None)
Return accuracy on provided data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns:
score – Mean accuracy of
self.predict(X)w.r.t. y.- Return type:
float
- set_params(**params) BaseQRC
Sets the hyper-parameters of the QLEM model.
- Parameters:
params (dict) – A dictionary of hyper-parameters to set.
- Returns:
The modified QLEM model.
- Return type:
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') QRCClassifier
Configure whether metadata should be requested to be passed to the
scoremethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object