squlearn.qrc.QRCClassifier

class squlearn.qrc.QRCClassifier(encoding_circuit: EncodingCircuitBase, executor: Executor, ml_model: str = 'linear', ml_model_options: dict | None = None, operators: ObservableBase | list[ObservableBase] | str = 'random_paulis', num_operators: int = 100, operator_seed: int = 0, param_ini: ndarray | None = None, param_op_ini: ndarray | None = None, parameter_seed: int | None = 0, caching: bool = True)

Quantum Reservoir Computing for classification.

This class implements a Quantum Reservoir Computing (QRC) framework designed for regression tasks. In QRC, data is encoded into a quantum system—referred to as the quantum reservoir—using an encoding circuit. The state of the quantum reservoir is then measured using a set of quantum operators, often randomly chosen. The measured values, also known as expectation values, are used as features for a classical machine learning model to perform the classification. As a default a simple classification based on a single perceptron is used.

Parameters:
  • encoding_circuit (EncodingCircuitBase) – The encoding circuit to use for encoding the data into the reservoir.

  • executor (Executor) – Executor instance

  • ml_model (str) –

    The classical machine learning model to use (default: linear), possible values are:

    • "mlp" for a multi-layer perceptron classification model.

    • "linear" for a single layer perceptron.

    • "kernel" for a Support Vector Classifier with a RBF kernel.

  • ml_model_options (dict) – The options for the machine learning model. Default options of the sklearn model are used if None.

  • operators (Union[ObservableBase, list[ObservableBase], str]) –

    Strategy for generating the operators used to measure the quantum reservoir. Possible values are:

    • "random_paulis" generates random Pauli operators (default).

    • "single_paulis" generates single qubit Pauli operators.

    Alternatively, a list of ObservableBase objects can be provided.

  • num_operators (int) – The number of random Pauli operators to generate for "operators = random_paulis" (default: 100).

  • operator_seed (int) – The seed for the random operator generation for "operators = random_paulis" (default: 0).

  • param_ini (Union[np.ndarray, None]) – The parameters for the encoding circuit.

  • param_op_ini (Union[np.ndarray, None]) – The initial parameters for the operators.

  • parameter_seed (Union[int, None]) – The seed for the initial parameter generation if no parameters are given.

  • caching (bool) – Whether to cache the results of the evaluated expectation values.

See also

squlearn.qrc.QRCRegressor

Quantum Reservoir Computing for Regression.

squlearn.qrc.base_qrc.BaseQRC

Base class for Quantum Reservoir Computing.

Example: Classification of Moon example with Quantum Reservoir Computing

from squlearn import Executor
from squlearn.encoding_circuit import HubregtsenEncodingCircuit
from squlearn.qrc import QRCClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split

X, y = make_moons(n_samples=1000, noise=0.2, random_state=42)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.33, random_state=42)

clf = QRCClassifier(HubregtsenEncodingCircuit(num_qubits=4),
                    Executor(),
                    ml_model="linear",
                    operators="random_paulis",
                    num_operators=300,
                    )

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

Methods:

dump(target: str | IO[bytes]) None

Serializes the model object to a file or file-like object. :param target: The target file path or file-like object where the model will be serialized. :type target: Union[str, IO[bytes]]

fit(X, y) None

Fit a new Quantum Reservoir Computing model to data.

Parameters:
  • X – Input data

  • y – Labels

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:

routing – A MetadataRequest encapsulating routing information.

Return type:

MetadataRequest

get_params(deep: bool = True) dict

Returns a dictionary of parameters for the current object.

Parameters:

deep – If True, includes the parameters from the base class.

Returns:

A dictionary of parameters for the current object.

Return type:

dict

classmethod load(source: str | IO[bytes], executor: Executor) T

Deserializes the model object from a file or file-like object, injecting the provided Executor. :param source: The source file path or file-like object from which the model will be deserialized. :type source: Union[str, IO[bytes]] :param executor: The Executor instance to be injected into the deserialized model. :type executor: Executor

Returns:

The deserialized model object with the injected Executor.

predict(X) ndarray

Predict using the Quantum Reservoir Computing.

Parameters:

X – The input data.

Returns:

The predicted values.

Return type:

np.ndarray

score(X, y, sample_weight=None)

Return accuracy on provided data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters:
  • X (array-like of shape (n_samples, n_features)) – Test samples.

  • y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.

  • sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.

Returns:

score – Mean accuracy of self.predict(X) w.r.t. y.

Return type:

float

set_params(**params) BaseQRC

Sets the hyper-parameters of the QLEM model.

Parameters:

params (dict) – A dictionary of hyper-parameters to set.

Returns:

The modified QLEM model.

Return type:

BaseQRC

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') QRCClassifier

Configure whether metadata should be requested to be passed to the score method.

Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with enable_metadata_routing=True (see sklearn.set_config()). Please check the User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Parameters:

sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in score.

Returns:

self – The updated object.

Return type:

object