squlearn.qrc.base_qrc
.BaseQRC
- class squlearn.qrc.base_qrc.BaseQRC(encoding_circuit: EncodingCircuitBase, executor: Executor, ml_model: str = 'linear', ml_model_options: dict | None = None, operators: ObservableBase | list[ObservableBase] | str = 'random_paulis', num_operators: int = 100, operator_seed: int = 0, param_ini: ndarray | None = None, param_op_ini: ndarray | None = None, parameter_seed: int | None = 0, caching: bool = True)
Base class for Quantum Reservoir Computing (QRC) models.
- Parameters:
encoding_circuit (EncodingCircuitBase) – The encoding circuit to use for encoding the data into the reservoir.
executor (Executor) – Executor instance
ml_model (str) – The classical machine learning model to use (default: linear), possible values are
"mlp"
,"linear"
, and"kernel"
. Implementation depends on the child.ml_model_options (dict) – The options for the machine learning model. Default options of the sklearn model are used if None.
operators (Union[ObservableBase, list[ObservableBase], str]) –
Strategy for generating the operators used to measure the quantum reservoir. Possible values are:
"random_paulis"
generates random Pauli operators (default)."single_paulis"
generates single qubit Pauli operators.
Alternatively, a list of ObservableBase objects can be provided.
num_operators (int) – The number of random Pauli operators to generate for
"operators = random_paulis"
(default: 100).operator_seed (int) – The seed for the random operator generation for
"operators = random_paulis"
(default: 0).param_ini (Union[np.ndarray, None]) – The parameters for the encoding circuit.
param_op_ini (Union[np.ndarray, None]) – The initial parameters for the operators.
parameter_seed (Union[int, None]) – The seed for the initial parameter generation if no parameters are given.
caching (bool) – Whether to cache the results of the evaluated expectation values.
- fit(X, y) None
Fit a new Quantum Reservoir Computing model to data.
- Parameters:
X – Input data
y – Labels
- get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing – A
MetadataRequest
encapsulating routing information.- Return type:
MetadataRequest
- get_params(deep: bool = True) dict
Returns a dictionary of parameters for the current object.
- Parameters:
deep – If True, includes the parameters from the base class.
- Returns:
A dictionary of parameters for the current object.
- Return type:
dict
- predict(X) ndarray
Predict using the Quantum Reservoir Computing.
- Parameters:
X – The input data.
- Returns:
The predicted values.
- Return type:
np.ndarray