squlearn.kernel.matrix.kernel_matrix_base
.KernelMatrixBase
- class squlearn.kernel.matrix.kernel_matrix_base.KernelMatrixBase(encoding_circuit: EncodingCircuitBase, executor: Executor, initial_parameters: ndarray | None = None, parameter_seed: int | None = 0, regularization: str | None = None)
Base class for defining quantum kernels.
- Parameters:
encoding_circuit (EncodingCircuitBase) – PQC encoding circuit
executor (Executor) – Executor object
initial_parameters (Union[np.ndarray, None], default=None) – Initial parameters of the PQC encoding circuit
parameter_seed (Union[int, None], default=0) – Seed for the random number generator for the parameter initialization, if initial_parameters is None.
regularization (Union[str, None], default=None) – Str that specifies the method with which the kernel matrix should be regularized. See method attribute from KernMatrixBase._regularize_matrix() method for valid options.
- assign_parameters(parameters)
Fix the training parameters of the encoding circuit to numerical values
- Parameters:
parameters (np.ndarray) – Array containing numerical values to be assigned to the trainable parameters of the encoding circuit
- abstract evaluate(x: ndarray, y: ndarray = None) ndarray
Computes the quantum kernel matrix.
- Parameters:
x (np.ndarray) – Vector of training or test data for which the kernel matrix is evaluated
y (np.ndarray, default=None) – Vector of training or test data for which the kernel matrix is evaluated
- Returns:
Returns the quantum kernel matrix as 2D numpy array.
- evaluate_pairwise(x: ndarray, y: ndarray = None) float
Computes the quantum kernel matrix.
- Parameters:
x (np.ndarray) – Vector of training or test data for which the kernel matrix is evaluated
y (np.ndarray, default=None) – Vector of training or test data for which the kernel matrix is evaluated
- evaluate_with_parameters(x: ndarray, y: ndarray, parameters: ndarray) ndarray
Computes the quantum kernel matrix with assigned parameters
- Parameters:
x (np.ndarray) – Vector of training or test data for which the kernel matrix is evaluated
y (np.ndarray) – Vector of training or test data for which the kernel matrix is evaluated
parameters (np.ndarray) – Array containing numerical values to be assigned to the trainable parameters of the encoding circuit
- get_params(deep: bool = True) dict
Returns hyper-parameters and their values of the kernel method.
- Parameters:
deep (bool) – If True, also the parameters for contained objects are returned (default=True).
- Returns:
Dictionary with hyper-parameters and values.
- abstract set_params(**params)
Sets value of the fidelity kernel hyper-parameters.
- Parameters:
params – Hyper-parameters and their values, e.g.
num_qubits=2