squlearn.encoding_circuit
.RandomLayeredEncodingCircuit
- class squlearn.encoding_circuit.RandomLayeredEncodingCircuit(num_qubits: int, num_features: int, seed: int = 0, min_num_layers: int = 2, max_num_layers: int = 10, feature_probability=0.3)
Creates a random Layered encoding circuit with no trainable parameters.
A random Layered encoding circuit is generated by randomly selecting gates from a predefined action space. The action space contains single qubit gates, two qubit gates. Non-parametrized gates that are placed in the random circuit are: H, X, Y, Z, cx, cy, cz. Included paramererized gates are Rx, Ry, Rz, crx, cry, crz, where the parameter is either a fixed angle or a feature. Fixed angles are \(\pi\), \(\pi/2\), \(\pi/3\), \(\pi/4\), \(\pi/8\). Feature \(x\) are encoded as \(x\), \(x\pi\), \(\arctan(x)\). The random circuit generation enforces, that all features are encoded at least once.
A seed is used to identify the random circuit, so that the same circuit can be reproduced. The number of layers is randomly chosen between
min_num_layers
andmax_num_layers
. The probability of a layer containing an encoding gate is given byfeature_probability
.Example for 4 qubits and a 6 dimensional feature vector
(
Source code
,png
,hires.png
,pdf
)- Parameters:
num_qubits (int) – Number of qubits of the encoding circuit
num_features (int) – Dimension of the feature vector
seed (int) – Seed for the random number generator (default: 0)
min_num_layers (int) – Minimum number of layers (default: 2)
max_num_layers (int) – Maximum number of layers (default: 10)
feature_probability (float) – Probability of a layer containing an encoding gate (default: 0.3)
- draw(output: str = None, feature_label: str = 'x', parameter_label: str = 'p', decompose: bool = False, **kwargs) None
Draws the encoding circuit circuit using the QuantumCircuit.draw() function.
- Parameters:
feature_label (str) – Label for the feature vector (default:”x”).
parameter_label (str) – Label for the parameter vector (default:”p”).
decompose (bool) – If True, the circuit is decomposed before printing (default: False).
kwargs – Additional arguments from Qiskit’s QuantumCircuit.draw() function.
- Returns:
Returns the circuit in qiskit QuantumCircuit.draw() format
- generate_initial_parameters(seed: int | None = None) ndarray
Generates random parameters for the encoding circuit
- Parameters:
seed (Union[int,None]) – Seed for the random number generator (default: None)
- Returns:
The randomly generated parameters
- get_circuit(features: ParameterVector | ndarray, parameters: ParameterVector | ndarray = None) QuantumCircuit
Returns the quantum circuit of the Random Layered encoding circuit.
- Parameters:
features (Union[ParameterVector, np.ndarray]) – The input features.
parameters (Union[ParameterVector, np.ndarray]) – The trainable parameters of the circuit (not used, since there are no free parameters).
- Returns:
The quantum circuit of the Random Layered encoding circuit.
- Return type:
QuantumCircuit
- get_params(deep: bool = True) dict
Returns hyper-parameters and their values of the Random Layered encoding circuit
- Parameters:
deep (bool) – If True, also the parameters for contained objects are returned (default=True).
- Returns:
Dictionary with hyper-parameters and values.
- set_params(**params) EncodingCircuitBase
Sets value of the random layered encoding circuit hyper-parameters.
The random circuit is regenerated with the new hyper-parameters.
- Parameters:
params – Hyper-parameters and their values, e.g.
num_qubits=2
.