squlearn.encoding_circuit
.HubregtsenEncodingCircuit
- class squlearn.encoding_circuit.HubregtsenEncodingCircuit(num_qubits: int, num_features: int, num_layers: int = 1, closed: bool = True, final_encoding=False)
Creates the data reuploading encoding circuit as presented in reference [1].
Example for 4 qubits, a 2 dimensional feature vector, 2 layers:
(
Source code
,png
,hires.png
,pdf
)The encoding can be optionally repeated at the end to make the previous rotations not redundant in a fidelity kernel setting. The circuit is closed by default, i.e. the last qubit is entangled with the first one.
- Parameters:
num_qubits (int) – Number of qubits of the encoding circuit
num_features (int) – Dimension of the feature vector
num_layers (int) – Number of layers (default:1)
closed (bool) – If true, the last and the first qubit are entangled; not necessarily hardware efficient! (default: true)
final_encoding (bool) – If True, the encoding is repeated at the end (default: False)
References
[1]: T. Hubregtsen et al., “Training Quantum Embedding Kernels on Near-Term Quantum Computers”, arXiv:2105.02276v1 (2021).
- compose(x, concatenate_features=True, concatenate_parameters=False)
Composition of encoding circuits with options for handling features and parameters
Number of qubits and features have to be equal in both encoding circuits! The special function and properties of the both encoding circuits are lost by this composition.
- Parameters:
self (EncodingCircuitBase) – right / first encoding circuit
x (EncodingCircuitBase) – left / second encoding circuit
- Returns:
Returns the composed encoding circuit as special class ComposedEncodingCircuit
- draw(output: str = None, feature_label: str = 'x', parameter_label: str = 'p', decompose: bool = False, **kwargs) None
Draws the encoding circuit circuit using the QuantumCircuit.draw() function.
- Parameters:
feature_label (str) – Label for the feature vector (default:”x”).
parameter_label (str) – Label for the parameter vector (default:”p”).
decompose (bool) – If True, the circuit is decomposed before printing (default: False).
kwargs – Additional arguments from Qiskit’s QuantumCircuit.draw() function.
- Returns:
Returns the circuit in qiskit QuantumCircuit.draw() format
- generate_initial_parameters(seed: int | None = None) ndarray
Generates random parameters for the encoding circuit
- Parameters:
seed (Union[int,None]) – Seed for the random number generator (default: None)
- Returns:
The randomly generated parameters
- get_circuit(features: ParameterVector | ndarray, parameters: ParameterVector | ndarray) QuantumCircuit
Generates and returns the circuit of the Hubregtsen encoding circuit
- Parameters:
features (Union[ParameterVector,np.ndarray]) – Input vector of the features from which the gate inputs are obtained.
param_vec (Union[ParameterVector,np.ndarray]) – Input vector of the parameters from which the gate inputs are obtained.
- Returns:
Returns the Hubregtsen circuit in qiskit QuantumCircuit format
- get_params(deep: bool = True) dict
Returns hyper-parameters and their values of the Hubregtsen encoding circuit
- Parameters:
deep (bool) – If True, also the parameters for contained objects are returned (default=True).
- Returns:
Dictionary with hyper-parameters and values.
- inverse()
Returns the inverse of the encoding circuit.
- Returns:
The inverse of the encoding circuit
- set_params(**params) EncodingCircuitBase
Sets value of the encoding circuit hyper-parameters.
- Parameters:
params – Hyper-parameters and their values, e.g.
num_qubits=2
.