squlearn.qnn.training
.train
- class squlearn.qnn.training.train(qnn: LowLevelQNNBase, input_values: list | ndarray, ground_truth: list | ndarray, param_ini: list | ndarray, param_op_ini: list | ndarray, loss: LossBase, optimizer: OptimizerBase, shot_control: ShotControlBase = None, weights: list | ndarray = None, opt_param_op: bool = True)
Function for training a given QNN.
- Parameters:
QNN (LowLevelQNNBase) – QNN instance that is trained
input_values (Union[list,np.ndarray]) – List of input values, i.e. training data
ground_truth (Union[list,np.ndarray]) – List of ground truth values, e.g. labels of the training data
param_ini (Union[list,np.ndarray]) – Initial parameters of the encoding circuit
param_op_ini (Union[list,np.ndarray]) – Initial parameters of the observable
loss (LossBase) – Loss instance that is minimized
optimizer (OptimizerBase) – Optimizer instance that is used for the minimization
shot_control (ShotControlBase) – Shot control instance that is used for setting the shots for each optimization step (default: None)
weights (Union[list,np.ndarray]) – Weighting of the reference values. Has to be the same size as input and ground_truth (default : None)
opt_param_op (bool) – If True, observable parameters are optimized as well (default: True)
- Returns:
Optimized parameters of the PQC, and, if opt_param_op=True, the optimized parameters of the observable